

YEAR 12 MATHEMATICS METHODS

Differentiation, applications and anti-differentiation ${f Test} \ {f 2}$

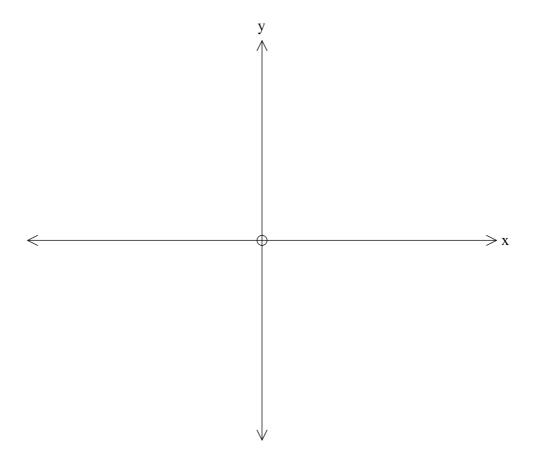
Marks:

/50

By daring & by doing

Name: _____

Calculator Free (24 marks) 1. [3 marks]				
Using calculus techniques, find two numbers whose difference is 32 and whose product is a minimum.				
2. [4 marks]	3]			


The displacement for an object is given by $x = \frac{2t-5}{3t+1}$, where x is in metres and t is in

seconds. Find the equations for velocity and acceleration.

3. [6 marks]

a) Find the coordinates of all stationary points on the curve $y = (2x+1)(x-2)^4$.

b) Sketch the curve, identifying the point of inflection (x-value sufficient).

[3]

4. [3 marks]

Given that $y = \sqrt[3]{x}$, use x = 27 and the incremental formula $\delta y \approx \frac{dy}{dx} \times \delta x$ to determine an approximate value for $\sqrt[3]{29}$.

[3]

5. [2 marks]

Given that $f'(x) = 3x^3 - 3x^2$ and f(2) = 7, find f(x).

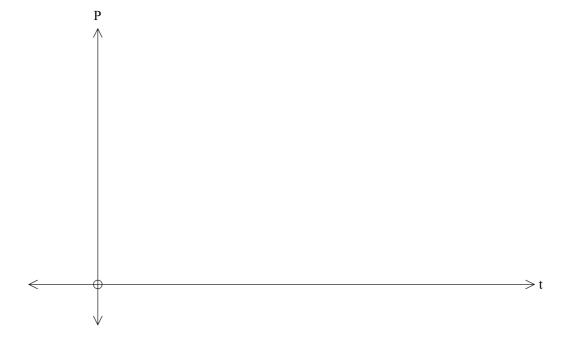
6. [6 marks]

Find the **antiderivative** of each of the following:

- a) $2x^4$
- b) $\frac{x^3}{5}$
- c) $\frac{4}{x^2}$
- d) e^{5x}
- e) $6e^{\frac{x}{3}}$
- f) $\sqrt{2x-5}$

NAME:	

By daring & by doing


Calculator Section

(26 marks)

7. [4 marks]

The population P of fish in a certain lake was studied over time, and at the start the number of fish was 2500.

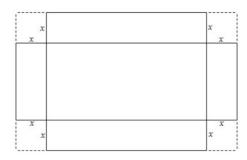
- a) During the study, $\frac{dP}{dt}$ < 0 . What does this say about the number of fish during the study?
- [1] b) If, at the same time, $\frac{d^2P}{dt^2} > 0$, what can you say about the population rate?
- c) Sketch the graph of the population P against t.

[1]

8.	[2	marks]
o.	4	marks

For a certain curve, the derivative is zero when x = -3. Also f''(-3) = 0 and f''(x) > 0 either side of x = -3. Explain what kind of point is at x = -3.

[2]


- 9. [5 marks]
- a) At the Blackstrap Molasses factory, the profit in dollars depends on the amount (x kg) of molasses according to the formula $P = -x^3 + 69x^2 + 5040x + 580$. What is the marginal profit after the 50^{th} kg is sold?

[2]

b) A spherical balloon is subjected to heat, causing it to expand uniformly. Use the incremental formula to find the approximate percentage change in volume when the diameter increases by 4%.

10. [4 marks]

A box is made by cutting square corners out of a rectangular piece of tin and folding the sides up. If the original piece of tin measures 63 cm by 15 cm, and the squares have side length x cm, find using calculus techniques the volume of the box formed and justify that the volume is a maximum.

11	[11	marks
T T .	1 1 1	manno

A particle is initially at an origin O. It is then projected away from O and moves in a straight line such that its displacement from O, t seconds later is x metres where $x = t^3 - 6t^2 + 9t$.

Determine:

- a) the initial speed of projection.
- b) when the particle is at rest and how far it is from the origin at these times.

[2]

[3]

- c) when the particle is moving in a positive direction.
- d) the total distance travelled in the first 5 seconds.